PP电子「中国」平台网站

您好,欢迎进入PP电子有限公司网站!

咨询热线:

13706139936

研究人员设计机器学习模型以更好地预测青少年自杀和PP电子 游戏自残风险

发布时间:2023-09-06 01:39人气:

  2. 研究人员使用机器学习模型分析了多种潜在风险因素,发现情绪问题、学校家庭环境等都是重要预测因素。

  站长之家(9月5日 消息:新南威尔士大学的最新研究显示,人工智能可以帮助识别青少年自杀和自伤的风险因素。

  研究人员使用澳大利亚一项纵向追踪调查的参与者数据,这些14-17岁青少年中有10.5%报告有自伤行为,5.2%报告最近一年至少一次自杀尝试。

  研究收集了超过4000个潜在风险因素数据,然后使用机器学习模型分析哪些因素最能预测未来的自杀自伤行为。

  PP电子的官方网站

  结果显示,抑郁、焦虑、行为问题、自我认知及环境压力是最重要的风险预测因素。另外,之前的自杀企图反而不是主要的预测因子。这与当前仅依据历史尝试评估风险的做法不同。研究还发现,学校和家庭环境对青少年心理健康的影响可能大于先前的认知。

  研究人员根据确定的最重要的风险因素创建了机器学习模型,以预测研究参与者的自杀和自残行为,这些模型能够比标准方法更准确地预测尝试。

  研究人员认为,这样的机器学习模型可以辅助临床评估青少年的自杀自伤风险。但是还需要在实际患者数据上验证模型的准确性。

  研究人员表示,像这样的机器学习模型可以支持临床医生评估青少年患者的自杀和自残风险。“根据患者信息,机器学习算法可以计算每个人的分数,并且可以将其集成到电子病历系统中。临床医生可以快速检索该信息以确认或调整他们的评估。”

  利用大数据和人工智能可以更准确预测青少年的自杀自伤风险,以便及早干预。但是模型也需要考虑诸多社会和环境因素,而不仅仅依赖个体心理状况。PP电子 app


13706139936