不需要额外训练一个模型,也不需要对计算硬件做优化,单张A100最快几小时就能微调完成。
目前,它已经成功部署到伯克利70亿参数的“骆马”Vicuna中,后续还会支持其他大模型,已经登上GitHub热榜:
但其实,在这种方法推出之前,业界并非没有大模型推理加速方法,主流的就是DeepMind推出的投机采样(speculative decoding)。
相比计算量的增加,大模型推理速度更容易受到内存带宽的影响(memory bound)。
这是因为,大模型由于参数量巨大、远超缓存容量,因此推理时需要先把权重从外部内存(显存)读取一次到缓存中,这个过程受内存带宽限制,速度通常很慢。
基于这个特点,DeepMind去年11月想出了一个名叫投机采样的神奇操作
训练一个更小的模型(draft模型),给大模型提前生成一批“候选词”,相比于让大模型自己“思考”生成,直接做“选择”就好。
由于小模型生成速度比大模型快好几倍,一旦大模型觉得小模型已有的词“可用”,就直接拿来,不用自己再缓慢生成一遍。
这个过程,有点像是输入法的联想词候选,在我们(大模型)想好下一个词用什么之前,输入法(小模型)先给列出一些备选项:
要是看到觉得不错,就从中选一个用;要是觉得生成的都不行,就pass掉自己重新打。
这种投机采样方法确实取得了显著成效,甚至能轻轻松松在M2Ultra上以高精度跑340亿参数LLaMA大模型。
这个小模型可不是随便抓个生成模型就能用,除了接口统一、概率分布接近等要求,生成质量也不能比大模型差太多。
对于Meta发布的LLaMA这种模型可能还好,既有几百亿参数的大模型版本,又有几十亿参数的小模型版本,可以把参数量更小的版本拿来当draft模型使用。
但对于其他开源大模型,这种方法就不太适用了,自己去搭建训练一个小模型,不仅时间成本更高,生成效果可能还不达预期。
这是因为,相比于大模型自身是一个系统,新增加的draft模型相当于又引入了一个系统。
这样会导致模型部署起来更复杂,包括额外的网络传输、不同的硬件条件都需要考虑到,在做计算优化时难度也会进一步提升。
Medusa(美杜莎,一种长有多个头的妖怪)是一种新的大模型推理加速方法。
相比投机采样,它选择直接给Transformer大模型多加几个解码头(decoding heads),每个头都是一个单层前馈网络。
这几个多出来的解码头,可以让大模型直接一次多生成几个词,而不是“挤牙膏式”一个一个生成。
生成准确率也还可以,在预测“下一个词的下一个词”时,Medusa准确率达到了60%,还在不断优化中。
基于Medusa,Vicuna的70亿、130亿和330亿参数大模型推理速度,均有了1.9倍以上的效率提升:
针对70亿参数的模型,研究者们还在不同任务上测试了一下加速效果,显示最高在代码生成上有2.15倍的速度提升。
相比PP电子 app之下,它可以和大模型一起训练,只需要冻结大模型的参数就行,甚至单个GPU就能搞定。
共同一作蔡天乐,普林斯顿大学博士生,研究方向包括优化、表示学习、架构设计等,本科毕业于北京大学数学科学学院,获得应用数学和计算机科学双学位。
共同一作Yuhong(Jesse)Li,伊利诺伊大学香槟分校(UIUC)博士生,研究方向是高效机器学习,本科毕业于北京邮电大学。
FlashAttention是一种能加快注意力并减少内存占用的方法,相比PyTorch标准注意力实现,最高能提速9倍。
更多
软银寻求与 OpenAI 合作:孙正义计划在 Arm IPO 后大举交易
「字少信息量大」,Salesforce、MIT 研究者手把手教 GPT-4「改稿」,数据集已开源
霄云科技碧海存储产品成功通过上海市信息技术应用创新综合服务中心信创适配测试
复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来PP电子 游戏
Copyright © 2019-2023 PP电子「中国」平台网站 版权所有 备案号:鄂ICP备12015236号